SIGMA PHENGUARD 935

(SIGMA PHENGUARD COATING)

	4 pagesSeptember 2005 Revision of January 2003
DESCRIPTION	two component high build amine adduct cured phenolic epoxy coating
PRINCIPAL CHARACTERISTICS	- second coat in the Sigma Phenguard tankcoating system - excellent resistance to a wide range of organic acids, alcohols, edible oils, fats (regardless of free fatty acid content) and solvents - maximum cargo flexibility - low cargo absorption - good resistance to hot water - Recognized corrosion control coating (Lloyd's register), see sheet 1886 - good application properties, resulting in a smooth surface
COLOURS AND GLOSS	pink - eggshell
BASIC DATA AT $\mathbf{2 0}^{\circ} \mathrm{C}$	$\left(1 \mathrm{~g} / \mathrm{cm}^{3}=8.25 \mathrm{lb} / \mathrm{US} \mathrm{gal} ; 1 \mathrm{~m}^{2} / \mathrm{l}=40.7 \mathrm{ft}^{2} / \mathrm{US}\right.$ gal $)$ (data for mixed product)
Mass density	$1.7 \mathrm{~g} / \mathrm{cm}^{3}$
Volume solids	$66 \pm 2 \%$
VOC (supplied)	max. 191 g/kg (Directive 1999/13/EC, SED) max. $315 \mathrm{~g} / \mathrm{l}$ (approx. $2.6 \mathrm{lb} / \mathrm{gal}$)
Recommended dry film thickness	$100 \mu \mathrm{~m}$ *
Theoretical spreading rate	$6.6 \mathrm{~m}^{2} / \mathrm{l}$ for $100 \mu \mathrm{~m}$ *
Touch dry after	2 hours
Overcoating interval	min. 24 hours * max. 21 days *
Curing time	see curing table * (data for components)
Shelf life (cool and dry place)	at least 12 months
Flash point	base $25^{\circ} \mathrm{C}$, hardener $32^{\circ} \mathrm{C}$ * see additional data
RECOMMENDED SUBSTRATE CONDITIONS AND TEMPERATURES	- previous coat of Sigma Phenguard 930; dry and free from any contamination - the substrate must be perfectly dry before and during application of Sigma Phenguard 935 - substrate temperature must be above $10^{\circ} \mathrm{C}$ and at least $3^{\circ} \mathrm{C}$ above dew point during application and curing
SYSTEM SPECIFICATION	marine system sheet 3141 tankcoatings system sheet 3322

SIGMA PHENGUARD 935

(SIGMA PHENGUARD COATING)

INSTRUCTIONS FOR USE

Induction time

Pot life

AIRLESS SPRAY

Recommended thinner
Volume of thinner
Nozzle orifice
Nozzle pressure

AIR SPRAY

Recommended thinner
Volume of thinner
Nozzle orifice
Nozzle pressure

BRUSH/ROLLER

Recommended thinner
Volume of thinner

CLEANING SOLVENT
SAFETY PRECAUTIONS
mixing ratio by volume: base to hardener 88 : 12

- the temperature of the mixed base and hardener should preferably be above $15^{\circ} \mathrm{C}$, otherwise extra solvent may be required to obtain application viscosity
- too much solvent results in reduced sag resistance and slower cure
- thinner should be added after mixing the components
allow induction time before use
$15^{\circ} \mathrm{C}-20 \mathrm{~min}$.
$20^{\circ} \mathrm{C}-15 \mathrm{~min}$.
$25^{\circ} \mathrm{C}-10 \mathrm{~min}$.
4 hours at $20^{\circ} \mathrm{C}$ *
* see additional data

Sigma thinner 91-92
2-10\%, depending on required thickness and application conditions approx. $0.46-0.53 \mathrm{~mm}$ ($=0.018-0.021 \mathrm{in})$
15 MPa (= approx. $150 \mathrm{bar} ; 2130$ p.s.i.)

Sigma thinner 91-92
2-10\%, depending on required thickness and application conditions 2 mm
0.3 MPa (= approx. 3 bar; 43 p.s.i.)

Sigma thinner 91-92
0-5\%
Sigma thinner 90-53
for paint and recommended thinners see safety sheets 1430, 1431 and relevant material safety data sheets
this is a solvent based paint and care should be taken to avoid inhalation of spray mist or vapour as well as contact between the wet paint and exposed skin or eyes

ADDITIONAL DATA

Film thickness and spreading rate

theoretical spreading rate $\mathrm{m}^{2} / \mathrm{l}$	6.6	5.3
dft in $\mu \mathrm{m}$	100	125

max. dft when brushing: $\quad 60 \mu \mathrm{~m}$

Overcoating table for Sigma Phenguard 935

Substrate temperature	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
minimum interval	36 hours	32 hours	24 hours	16 hours	12 hours
maximum interval	28 days	25 days	21 days	14 days	7 days

- surface should be dry and free from any contamination

Curing table

substrate temperature	min. curing time of Sigma Phenguard tankcoating system before transport of cargoes without note $4,7,8$ or 11 and ballast water and tanktest with seawater
$10^{\circ} \mathrm{C}$	14 days
$15^{\circ} \mathrm{C}$	14 days
$20^{\circ} \mathrm{C}$	10 days
$30^{\circ} \mathrm{C}$	7 days
$40^{\circ} \mathrm{C}$	5 days

- minimum curing time of Sigma Phenguard tankcoating system before transport of cargoes with note 4, 7, 8 or 11: 3 months
- for detailed information on resistance and resistance notes, please refer to the latest issue of the Cargo Resistance List
- for transport of methanol and vinyl acetate monomer, a hot cargo cure is required which cannot be substituted by a service period of 3 months with non-aggressive cargoes
- adequate ventilation must be maintained during application and curing (please refer to sheet 1433 and 1434)
- the performance of the applied system strongly depends on the curing degree of the first coat at time of recoating. Therefore overcoating time between 1st and 2nd coat is extended in comparison between 2nd and 3rd coat (see overcoating details)

Worldwide availability

REFERENCES

Pot life (at application viscosity)

$10^{\circ} \mathrm{C}$	6 hours
$20^{\circ} \mathrm{C}$	4 hours
$30^{\circ} \mathrm{C}$	1.5 hour

Whilst it is always the aim of Sigma Coatings to supply the same product on a worldwide basis, slight modification of the product is sometimes necessary to comply with local or national rules/circumstances. Under these circumstances an alternative product data sheet is used.

Explanation to product data sheets Safety indications
Safety in confined spaces and health safety Explosion hazard - toxic hazard Safe working in confined spaces Directives for ventilation practice Specification for mineral abrasives
see information sheet 1411
see information sheet 1430
see information sheet 1431
see information sheet 1433
see information sheet 1434
see information sheet 1491

LIMITATION OF LIABILITY

The information in this data sheet is based upon laboratory tests we believe to be accurate and is intended for guidance only. All recommendations or suggestions relating to the use of the products made by Sigma Coatings, whether in technical documentation, or in response to a specific enquiry, or otherwise, are based on data which to the best of our knowledge are reliable. The products and information are designed for users having the requisite knowledge and industrial skills and it is the end-user's responsibility to determine the suitability of the product for its intended use.

Sigma Coatings has no control over either the quality or condition of the substrate, or the many factors affecting the use and application of the product. Sigma Coatings does therefore not accept any liability arising from loss, injury or damage resulting from such use or the contents of this data sheet (unless there are written agreements stating otherwise).

The data contained herein are liable to modification as a result of practical experience and continous product development. This data sheet replaces and annuls all previous issues and it is therefore the user's responsibility to ensure that this sheet is current prior to using the product.

The English text of this document shall prevail over any translation thereof.

DS	7435
179115 pink	6007002200

